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Change of the scaling behavior of the end-to-end square distance
in a two-dimensional polydisperse system
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Abstract. The simulation of a two-dimensional, broadly polydisperse, living polymers system at high con-
centration reveals an unusual conformational behaviour for the longer chains. Unlike in three dimensions,
the longer chains are not swollen but are squeezed by the smaller chains. This observation is discussed in
terms of a two dimensional solvent- polymer mixture whose solvent particules are larger than the polymer
monomers.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 05.50.+q Lattice theory
and statistics; Ising problems – 64.60.Cn Order-disorder transformations; statistical mechanics of model
systems

The change in the chain dimension upon change in con-
centration, φ, is a major topic in polymer physics, and
has already been studied numerically to some extent
[1–5]. The main effect observed is a change of the scaling
exponent, ν, relating the end-to-end square radius, R2

e(L),
to the degree of polymerization, L.

Both in two and three dimensions, the value of ν in-
terpolates from the value for a dilute self-avoiding walk
(ν ∼= 3/5 in three dimensions and ν = 3/4 in two dimen-
sions) to the value for a Gaussian chain (ν = 1/2).

However, some huge differences exist between two-
dimensional and three-dimensional systems. Unlike the
three-dimensional case, θ-chains are not Gaussian in two
dimensions: ν(θ) = 4/7 > 1/2 [6]. Two-dimensional Gaus-
sian chains are simply globular (νg = 1/2 = 1/d). In
three dimensions, for a melt of monodisperse chains, the
chains interpenetrate each other. A chain of N monomers
is swollen by smaller chains of P monomers, provided that
N1/2 > P [7].

In a two-dimensional monodisperse system, the chains
are non-interpenetrating, and the notion of blob seems to
be no more valid at high concentrations [2]. Also, in a two-
dimensional polydisperse system, no swelling of the larger
chain by the smaller is observed [8–10]. The last result
comes from the simulation of living polymers [11]. These
polymers are particulary interesting as a case study for the
simulation of a polydisperse system [12]. The chain length
distribution C(L) is broad and decays exponentially:

C(L) ∝ e−L|〈L〉 (1)

〈L〉 ∝ φ1/2e(E+1)/2kT
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where E is the energy between two bound monomers. The
great amount of small chains for few long chains is an ideal
case to study a possible swelling of the longer chains by the
smaller. Moreover, the algorithm for the simulation, which
is based on a binding and breaking of the chains, is able
to simulate very dense systems [9,10,13–15]. A swelling of
the longer chains by the smaller chains would lead to

R2
e(L− 1) ∼ (L− 1)2νlong L > L∗

R2
c(L− 1) ∼ (L− 1)2νshort L < L∗ (2)

where R2
e(L) is the end-to-end mean square distance of a

polymer of L monomers (L− 1 bonds). L∗ is a cross-over
value at which the scaling regime changes. Swelling occurs
if νshort < νlong.

In fact, νshort > νlong is observed [10]: the asymptotic
regime given by νlong is seen for chain length L � lp,
where lp is the persistance length.

They are only a few numerical investigations on dense
systems [13,14], and even fewer on two-dimensional dense
systems [2,8,16]. Moreover, the chain lengths used were
rather short. Here, however, the numerical experiment
showing the absence of swelling in polydisperse systems
was conducted for a chain length ranging from 1 to 250
monomers, and for concentration φ ≤ 0.81 [10]. A com-
plete study of the dependence of R2

e on L and φ using the
same range of parameters leads to [17]:

R2(L, φ) = R2(L, 0)(1− cLεφ) (3)

where R2(L, 0) is the end-to-end square distance of a
dilute self-avoiding walk of L−1 steps, c is a numerical
constant depending on the lattice type (c = 0.21 for
the present square lattice) and z = γ2d−1 = 0.34.
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Fig. 1. Scaling plot of R2
e(L) as a function of (L − 1) at

φ = 0.81.

Equation (3) has only a physical meaning for Lεφ � 1.
When this condition is no more valid, R2 should have a
different dependence on L and φ. From a practical point
of view, the study of the chains for which Lεφ ∼ 1 is
a demanding computer task. The reasons are as follows:
the motion of the chains are slowed down at high den-
sity, even if a reptation algorithm is chosen. This implies
that a huge number of Monte-Carlo Steps (MCS) has to
be taken between two independant configurations. Due to
the quasi-exponential decaying distribution, a long chain
of contour length L, so that Lεφ ∼ 1, is a rare event.
This implies that a huge number of configurations have
to be sampled in order to have reliable statistics for those
chains. The binding energy, E, should be chosen so that
the mean chain length 〈L〉 is not too short. Except at
too high value of E, the correlation between two config-
urations increases since, not only does the relaxation of
longer chains take significantly longer, but the lifetime of
a bond is increased. So, parameter values used in previous
work have been retained.

An exhaustive description of the numerical procedure
can be found in [10].

Simulations have been conducted using a living poly-
mer system at concentrations of φ = 0.81, φ = 0.9025,
φ = 0.9801 and φ = 1, and reduced binding energy
E/kT = 7.04. Measurement of data were performed at
intervals of 20000 MCS (instead of 2500 for lower con-
centrations [10]) to obtain independent data sets. In spite
of the algorithm used, the system takes relatively long
time to relax and generate uncorrelated states. This limi-
tation comes from the very few number of free lattice sites
available for the chain to move to [14]. At φ = 1, only
the binding and breaking process generates new configu-
rations, but the relaxation of the system is not appreciably
slower than at φ = 0.9801.

For chain lengths L between L = 5 and L = 55, the
curve of ln(R2

e) versus ln(L−1) displays a straight-line be-
haviour, and the corresponding values of the exponent, ν,
given by a least square fit are 0.58, 0.56, 0.53 and 0.5±0.01
at concentrations φ = 0.81, 0.9025, 0.9801 and 1, respec-
tively. As for all other preceeding studies [1–5] the effec-
tive value of the exponent, ν, decreases with increasing
concentration. The same least square fit has been applied
on chains ranging from length L = 5 to L = 255. At a
concentration of φ = 0.81, the correlation of the curve
ln(R2

e) versus ln(L − 1) with a straight line remains very
good, leading to an apparent exponent of ν = 0.59± 0.02
(Fig. 1). The value of ν remains the same regardless of the
chain length investigated. The same holds at φ = 0.9025,
with ν = 0.59 ± 0.02. The slight change in the value of
ν remains very small, and is still within the reported er-
ror range. However, at concentration of φ = 0.9801, a
least square fit over the same range of chain length, i.e.,
5 < L < 255, gives a poorer correlation, yielding a value
of ν = 0.63 ± 0.04. Both the poorer correlation and the
unexpected high value of ν in comparison with that ob-
tained for φ = 0.81, suggest that R2

e(L) is not a sim-
ple or single power law function of L − 1. A snapshot of
the system (Fig. 2) at a concentration φ = 0.9801, in-
deed shows two kinds of chains: small globular chains and
longer chains squeezed by the globular chains with an en-
teric extended conformation. The change of conformation
appears for values of L ∼ 55. Below this chain are glob-
ular, and above this, extended. An hypothesis is that the
transition appears when the chain is so shrunk that its
mean square end-to-end distance, R2(L, φ), correspond to
that of a globular (Gaussian) chain on a square lattice,
R2
Gauss(L). Using the numerical values for a square lat-

tice [17,18], and also using equation (3), the condition
R2(L, φ) = R2

Gauss(L) is found numerically for L = 53.6,
in good agreement with the value of L = 55. A character-
istic squeezing size can, therefore, be defined, depending
only on L. The data were then analyzed in terms of the
two chain population (Fig. 3). The effective exponents are
ν = 0.53± 0.01 for the globular chain (last square fit for
5 < L < 55), and ν = 0.78 ± 0.05 (last square fit for
55 < L < 400) for the enteric chains. The same happens
at φ = 1 (Fig. 4) where ν = 0.5 ± 0.01 for the globular
chains, and ν = 0.85 ± 0.05 for the enteric chains. High
values of ν in a simulation occurs often for chains of length
L ∼ lp. The chains are only made of a few basic elements,
which are not necessarily monomers.

A classical case is the observation of an apparent value
of ν of the order unity for the coil globule transition in
three dimensions [19]: the chain goes through a state where
it is made of only a few sub-structures, and may not
be long enough to obey an asymptotic behavior. In the
present case, the question remains as to what the asymp-
totic value of ν could be for the longer chains.

The observed effect could be analyzed on the basis of
a short chain/long chain binary mixture [20,21]. However,
most of the available studies deal with short chains only,
a few times smaller than the long chains. The present sys-
tem, made of few long chains among many short chains,
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Fig. 2. Snapshot of the system for φ = 0.9801 showing the conformation of two small chains (diamonds) and two long chains
(squares) in the system.
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Fig. 3. Scaling plot of R2
e(L) as a function of (L − 1) at

φ = 0.9801.

has to be compared with polymer/solvent systems [22–24].
For two-dimensional systems, a molecular dynamics sim-
ulation [23], showing the effect of the ratio σs/σc on the
chain radius, is enlightening (σs and σc being the solvent
and monomer radius, respectively). For σs/σc > 1, the
radius of the polymer chain increases with σs/σc. In this
present work, the small globular chains can be seen as the
solvent molecules with a radius σs necessary greater than
σc (a single lattice site). Hence, the longer chains can be
considered as dilute chains in a polydisperse solvent with
solvent molecules much larger in size than the monomers.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

ln(L-1)

ln
 R

2

Fig. 4. Scaling plot of R2
e(L) as a function of (L−1) at φ = 1.

It is suggested that the physical origin of this chain exten-
sion is due to packing considerations, with the chain filling
the space between solvent molecules [23]. A similar expla-
nation can be given in the present case. This result can
also be seen as a generalization to two-dimensions of an
observation made on the conformation of a free chain in a
dense frozen melt [25]: the free probe chains are stretched
through bottlenecks into neighboring wells, with their di-
mension depending directly on the blob size of the frozen
chains.
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In order to ensure a gapless packing, the smaller chains
fractionate the longer chains into sub-units so that the
long chains fill the gaps. These sub-units, like the smaller
chains, are similar to disc-like objects whose size dis-
tribution influences the packing density [26]. Indeed, it
has been observed that in a system of two-dimensional
monodisperse dense system, the chains are packed in tri-
angular layers [2], this being the densest packing in two-
dimensions.

Moreover, the enteric conformation, made of globular
parts of the chain bound to each other instead of one single
globule for a chain, is also one of the means to reduce the
loss of entropy for shrunk chains. The longer chains with
an enteric conformation, are considered as dilute so far.
If, however, E is so great that a majority of chains have a
contour length greater than the squeezing length (L > 55
for the square lattice), they will interact with each other
and their behaviour should be described by scaling laws for
the semi-dilute regime, with the “monomer” being renor-
malized by an aggregate containing as many monomers as
in the squeezing length.

Conclusion

The present work shows the appearance of an enteric
extended conformation for the longer chain in a two-
dimensional polydisperse system. This squeezing of the
longer chains by the shorter chains must not be confused
with a swelling, as in three dimensions, but is related to
a phenomenon similar to the swelling of monodisperse
chains in the presence of solvent molecules greater than
the monomer size.

I thank D. Mooney for relecture of the manuscript.
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